anonymous
  • anonymous
Use the functions a(x) = 3x + 10 and b(x) = 2x − 8 to complete the function operations listed below. Part A: Find (a + b)(x). Show your work. (3 points) Part B: Find (a ⋅ b)(x). Show your work. (3 points) Part C: Find a[b(x)]. Show your work. (4 points)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@JoannaBlackwelder
anonymous
  • anonymous
@triciaal
zepdrix
  • zepdrix
\[\large\rm \color{royalblue}{a(x) = 3x + 10},\qquad \color{orangered}{b(x) = 2x − 8}\] \[\large\rm (a+b)(x)=\color{royalblue}{a(x)}+\color{orangered}{b(x)}\]\[\large\rm (a+b)(x)=\color{royalblue}{3x+10}+\color{orangered}{2x-8}\]Combine like-terms! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
5x+2?
zepdrix
  • zepdrix
Yay good job! That takes care of part A.
anonymous
  • anonymous
:}
zepdrix
  • zepdrix
For part B, you'll want to put some brackets around your a(x) and b(x) so the multiplication works out properly.\[\large\rm (a\cdot b)(x)=(\color{royalblue}{a(x)})\cdot(\color{orangered}{b(x)})\]\[\large\rm (a\cdot b)(x)=(\color{royalblue}{3x+10})\cdot(\color{orangered}{2x-8})\]
anonymous
  • anonymous
(3x+10)(2x+−8) =(3x)(2x)+(3x)(−8)+(10)(2x)+(10)(−8) =6x2−24x+20x−80 =6x2−4x−80
anonymous
  • anonymous
Correct?
zepdrix
  • zepdrix
Ooo looks good! :O
zepdrix
  • zepdrix
How bout part C, the composition. Having any trouble with that one?
anonymous
  • anonymous
Yes thats actually the one i am confused on >_<
zepdrix
  • zepdrix
\[\large\rm a(\color{#DD4747}{x}) = 3\color{#DD4747}{x} + 10\]We're replacing all of the x's in our function a(x) with another function b(x).\[\large\rm a(\color{#DD4747}{b(x)}) = 3\color{#DD4747}{b(x)} + 10\]
zepdrix
  • zepdrix
But again, since we have some multiplication going on, let's place brackets around the b(x) before we plug it in.
zepdrix
  • zepdrix
\[\large\rm a(\color{#DD4747}{b(x)}) = 3(\color{#DD4747}{b(x)}) + 10\]\[\large\rm a(\color{#DD4747}{b(x)}) = 3(\color{#DD4747}{2x-8}) + 10\]
anonymous
  • anonymous
=(3)(2x)+(3)(−8)+10 =6x+−24+10 =6x+−24+10 =(6x)+(−24+10) =6x+−14
zepdrix
  • zepdrix
yay good job!
anonymous
  • anonymous
i need help on part A!!!
anonymous
  • anonymous
@enchanted_bubbles
anonymous
  • anonymous
@zeddrix
anonymous
  • anonymous
@zepdrix
zepdrix
  • zepdrix
Then scroll up and read silly! :D
zepdrix
  • zepdrix
Notice the colors
zepdrix
  • zepdrix
Recall that addition is commutative, meaning we can move things around. So \(\large\rm 3x+10+2x-8\) is the same as \(\large\rm 3x+2x+10-8\) Combine your x's. You have 3 of them, and 2 more of them. 3 apples + 2 apples = ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.