Use the functions a(x) = 3x + 10 and b(x) = 2x − 8 to complete the function operations listed below. Part A: Find (a + b)(x). Show your work. (3 points) Part B: Find (a ⋅ b)(x). Show your work. (3 points) Part C: Find a[b(x)]. Show your work. (4 points)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Use the functions a(x) = 3x + 10 and b(x) = 2x − 8 to complete the function operations listed below. Part A: Find (a + b)(x). Show your work. (3 points) Part B: Find (a ⋅ b)(x). Show your work. (3 points) Part C: Find a[b(x)]. Show your work. (4 points)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\large\rm \color{royalblue}{a(x) = 3x + 10},\qquad \color{orangered}{b(x) = 2x − 8}\] \[\large\rm (a+b)(x)=\color{royalblue}{a(x)}+\color{orangered}{b(x)}\]\[\large\rm (a+b)(x)=\color{royalblue}{3x+10}+\color{orangered}{2x-8}\]Combine like-terms! :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

5x+2?
Yay good job! That takes care of part A.
:}
For part B, you'll want to put some brackets around your a(x) and b(x) so the multiplication works out properly.\[\large\rm (a\cdot b)(x)=(\color{royalblue}{a(x)})\cdot(\color{orangered}{b(x)})\]\[\large\rm (a\cdot b)(x)=(\color{royalblue}{3x+10})\cdot(\color{orangered}{2x-8})\]
(3x+10)(2x+−8) =(3x)(2x)+(3x)(−8)+(10)(2x)+(10)(−8) =6x2−24x+20x−80 =6x2−4x−80
Correct?
Ooo looks good! :O
How bout part C, the composition. Having any trouble with that one?
Yes thats actually the one i am confused on >_<
\[\large\rm a(\color{#DD4747}{x}) = 3\color{#DD4747}{x} + 10\]We're replacing all of the x's in our function a(x) with another function b(x).\[\large\rm a(\color{#DD4747}{b(x)}) = 3\color{#DD4747}{b(x)} + 10\]
But again, since we have some multiplication going on, let's place brackets around the b(x) before we plug it in.
\[\large\rm a(\color{#DD4747}{b(x)}) = 3(\color{#DD4747}{b(x)}) + 10\]\[\large\rm a(\color{#DD4747}{b(x)}) = 3(\color{#DD4747}{2x-8}) + 10\]
=(3)(2x)+(3)(−8)+10 =6x+−24+10 =6x+−24+10 =(6x)+(−24+10) =6x+−14
yay good job!
i need help on part A!!!
Then scroll up and read silly! :D
Notice the colors
Recall that addition is commutative, meaning we can move things around. So \(\large\rm 3x+10+2x-8\) is the same as \(\large\rm 3x+2x+10-8\) Combine your x's. You have 3 of them, and 2 more of them. 3 apples + 2 apples = ?

Not the answer you are looking for?

Search for more explanations.

Ask your own question