anonymous
  • anonymous
Which of the following gives the largest value?
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[4^{400}\] \[2^{800}\] \[3^{600}\] \[5^{200}\]
imqwerty
  • imqwerty
well u can write \[2^{800} \] as \[2^{2(400)}\]=\[4^{400}\] so A nd B are equal nd it is obvious that this is a single correct question so neither A nor B is the answer so now we have C and B we can write C as-\[3^{2(300)}\] =\[9^{300}\]which is greater than \[5^{300}\] so the answer is C
anonymous
  • anonymous
Ok thanks

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

imqwerty
  • imqwerty
or what u can do is u jst take the 200th root of all of these so now u get -\[4^{400/200} =4^2\]\[2^{800/200}=2^4\]\[3^{600/200}=3^3\]\[5^{200/200}=5^1\]so now u got smaller terms nd now u can compare easily

Looking for something else?

Not the answer you are looking for? Search for more explanations.