Someone help please.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Someone help please.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Given f(x)=x^2+7 and g(x)=x-4/x. Find (g (of) f)(-1)
A composite function, is the combination of two functions in order to create a third which has the combined features of the first two. The notation \((gof)(x)\) means \(g(f(x))\) which in essence, we could translate to "f composite in g". Now, when you write the composite function of other two, the whole composition of the first one will be composing the "x"s of the second, that'll create a new function which is the very composition and combination of the two desired. so, having: \[f(x)=x^2+7\] \[g(x)=\frac{ x-4 }{ x }\] The composite function gof will be taking the function f(x) and writing it instead of the x's on the function g(x): \[(gof)(x)=\frac{ (x^2+7)-4 }{ x^2+7 }\]
Is that how you find (go f)(f-1)?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

no, right now, you have found the general form of the composite function, if you want to find (gof)(-1) you replace the "x" for -1 and do the operations.
Can you show me an example of how to do the operations?
for example: \[(gof)(x)=x^2-2x\] if I want to find (gof)(-1) I would write it like this: \[(gof)(-1)=(-1)^2-2(-1)\] Therefore, the result would be: \[(gof)(-1)=3\]
(go f)(-1)=(-1+7)-4/ -1^2+7 Something like that?
yes
Ahhh, so, is that my answer?
yes, that can work out.
Thanks!

Not the answer you are looking for?

Search for more explanations.

Ask your own question