zmudz
  • zmudz
Find all \(x\) for which \(\left| x - \left| x-1 \right| \right| = \lfloor x \rfloor\) The answer is suppose to be in a range, but when I put in that it can be all real numbers, that is wrong.
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

dinamix
  • dinamix
x=1 and x= 1/3
anonymous
  • anonymous
I would try using the definition of the absolute value function to rewrite the LHS into something that you can easily match up with the RHS. \[|x|=\begin{cases}x&\text{for }x>0\\0&\text{for }x=0\\-x&\text{for }x<0\end{cases}\] This means \[\begin{align*}|x-|x-1||&=\begin{cases}x-|x-1|&\text{for }x-|x-1|>0\\0&\text{for }x-|x-1|=0\\-x+|x-1|&\text{for }x-|x-1|<0\end{cases}\\[2ex] &=\begin{cases}x-|x-1|&\text{for }x>\dfrac{1}{2}\\[1ex]0&\text{for }x=\dfrac{1}{2}\\[1ex]-x+|x-1|&\text{for }x<\dfrac{1}{2}\end{cases} \end{align*}\] You also have \[\begin{align*} |x-1|&=\begin{cases}x-1&\text{for }x>1\\0&\text{for }x=1\\-x+1&\text{for }x<1\end{cases} \end{align*}\]
anonymous
  • anonymous
Putting all this together, you get \[\begin{align*} |x-|x-1||&= \begin{cases} 1&\text{for }x>1\\x&\text{for }x=1\\[1ex]2x-1&\text{for }\dfrac{1}{2}

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Now, given that \[\lfloor x\rfloor=\begin{cases}&\vdots\\ 0&\text{for }0\le x<1\\ 1&\text{for }1\le x<2 \\&\vdots\end{cases}\] you have the isolated solution \(x=\dfrac{1}{2}\) (since both LHS and RHS are zero) and the range \([1,2)\).

Looking for something else?

Not the answer you are looking for? Search for more explanations.