cos(pi/2-x)=sin(x) True or False

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

cos(pi/2-x)=sin(x) True or False

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

false, doesn't work out
false
\(\cos(A-B) = \cos(A)\cos(B)+\sin(A)\sin(B)\) So in fact \(\cos(\dfrac{\pi}{2}-x)=\cos(\dfrac{\pi}{2})\cos(x)+\sin(\dfrac{\pi}{2})\sin(x)=0*\cos(x)+1*\sin(x)=\sin(x)\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

@plohrb @Dwayne_Johnson This is the problem with just giving answers...
this is also cofunction identity compare cos(pi-x) 's ratio and sin(x)'s ratio |dw:1441062161511:dw|
@Reid448 its true and we find it in (Equilateral triangle ,Triangle-based) right mr @freckles
equilateral triangle is a triangle with each of its angle measurements equal to 60 deg
i mean should be based and equilateral
the triangle
thanks @freckles that is cool, I always have to look it up.

Not the answer you are looking for?

Search for more explanations.

Ask your own question