Quick algebra question?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Quick algebra question?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Hi I need help solving this problem – Andrew can paint the neighbor’s house 6 times as fast as bailey. The year Andrew and Bailey worked together, it took them 5 days. How long would it take each ti paint the house? Andrew__ days? Bailey ____ days? The way I set up problem:
\[\frac{ 5 }{ x }+\frac{ 5 }{ 6x }=1\]
Not really sure if thats the correct setup so please help if u can! TIA! :-)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

@Mikuxluka can you help?
You have the correct equation. The next step I would do is multiply both sides by the LCD 6x to clear out the fractions
x=5?
\[\Large \frac{ 5 }{ x }+\frac{ 5 }{ 6x }=1\] \[\Large {\color{red}{6x}}*\left(\frac{ 5 }{ x }+\frac{ 5 }{ 6x }\right)={\color{red}{6x}}*1\] \[\Large {\color{red}{6x}}*\frac{ 5 }{ x }+{\color{red}{6x}}*\frac{ 5 }{ 6x }={\color{red}{6x}}*1\] \[\Large {\color{red}{6\cancel{x}}}*\frac{ 5 }{ \cancel{x} }+{\color{red}{\cancel{6x}}}*\frac{ 5 }{ \cancel{6x} }={\color{red}{6x}}*1\] \[\Large 6*5 + 5=6x\] Let me know if this enough to get going
x = 5 is incorrect
wouldnt it be 6*5+5=6x 35=6x x=5?
35 = 6x does not lead to x = 5
you're probably thinking 30 = 6x
oops lol so x=35/6 . so that would be the first answer..how would I find Baileys time?
x = 35/6 is correct now compute 6x by replacing x with 35/6
I am sorry I dont understand that :(
|dw:1441070231979:dw|
multiply both sides by 6 to go from "x" on the left side to "6x" |dw:1441070258679:dw|
|dw:1441070271344:dw|
so in a way, we already had the value of 6x when we were trying to isolate x earlier
Ok I see that. So 35/6 days would be Andrews answer. How would I find Baileys?
x = 35/6 6x = 35 Andrew takes 35/6 = 5.833 (roughly) days while Bailey takes 35 days (since 6x represents Bailey's time)
Oh wow now I see it. thanks so much for ur help have a great night!
you're welcome

Not the answer you are looking for?

Search for more explanations.

Ask your own question