anonymous
  • anonymous
okay my questions are #32. (-8-√-2)^2 #33. (2-3i)(3-i)-(4-i)(4+i) then i will have one more but i will have to write it after working these too.
Algebra
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

anonymous
  • anonymous
okay my questions are #32. (-8-√-2)^2 #33. (2-3i)(3-i)-(4-i)(4+i) then i will have one more but i will have to write it after working these too.
Algebra
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

jim_thompson5910
  • jim_thompson5910
let's focus on one at a time (one per post to devote the whole post to the question) like before, \[\Large \sqrt{-2} = i\sqrt{2}\] do you agree?
anonymous
  • anonymous
yes i agree
jim_thompson5910
  • jim_thompson5910
|dw:1441069958552:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jim_thompson5910
  • jim_thompson5910
go ahead and fill out the table (or what you can)
anonymous
  • anonymous
|dw:1441069842863:dw|
jim_thompson5910
  • jim_thompson5910
the root 2 in the lower right corner should be root 4
jim_thompson5910
  • jim_thompson5910
|dw:1441070341133:dw|
anonymous
  • anonymous
then i cross out the -8i√2
jim_thompson5910
  • jim_thompson5910
why cross that out?
anonymous
  • anonymous
i dont know im not sure how this is gonna help me to solve this problem
jim_thompson5910
  • jim_thompson5910
those terms would go away IF you had +8i*sqrt(2) and -8i*sqrt(2)
jim_thompson5910
  • jim_thompson5910
but instead we have two copies of -8i*sqrt(2)
jim_thompson5910
  • jim_thompson5910
\[\large i^2*\sqrt{4} = -1*2 = -2\]
jim_thompson5910
  • jim_thompson5910
|dw:1441070689367:dw|
anonymous
  • anonymous
okay
jim_thompson5910
  • jim_thompson5910
now add up all the terms inside the boxes \[\Large 64 + (-8i\sqrt{2})+(-8i\sqrt{2})+(-2) = 62 - 16i\sqrt{2}\]
jim_thompson5910
  • jim_thompson5910
make sense?
anonymous
  • anonymous
how do you get rid of the sqrt on the two or does it need to stay.
jim_thompson5910
  • jim_thompson5910
there's nothing we can do to simplify further, so we leave as is
anonymous
  • anonymous
so this is the answer?
jim_thompson5910
  • jim_thompson5910
yes, \[\Large \left(-8-\sqrt{-2}\right)^2 = 62 - 16i\sqrt{2}\]
anonymous
  • anonymous
actually i will have one more additional problem but i will post each into a new window. thank you thoughtfor the help bc that was the correct problem.
jim_thompson5910
  • jim_thompson5910
yeah one per post is a good idea to avoid clutter
jim_thompson5910
  • jim_thompson5910
and avoid lag too

Looking for something else?

Not the answer you are looking for? Search for more explanations.