Find the exact value of:

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\(\Large\cos (-\frac{5\pi}{4})\)
the negative sign is throwing me off
\(\cos(-x)=\cos(x)\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

wait. so is it basically just saying \(\Large\cos (\frac{5\pi}{4})\) o-o
correct
\[-\frac{ 1 }{ \sqrt{2} }\]
@matlee we all know how to use a calculator.
your smart , i hope you do
read the rules, if you can
cos(-5pi/4) = cos(5pi/4) =cos(2pi -3pi/4) =cos(3pi/4) =cos(pi-pi/4) =-cospi/4 =-1/sqrt(2) Source: mathskey.com
@matlee and @bradely , please don't provide direct answers, I don't care what the source is. So from what i see, \(\Large\cos (-\frac{5\pi}{4}) = -\frac{\sqrt{2}}{2}\)
So what was the purpose of putting a negative sign in there? Just to throw of poor unsuspecting students? Or is there actually something I need to do about the said negative sign?
and @satellite73 thank you for the trig cheat sheet, lot of helpful things on there
cos is even function cos(-x)= cos(x) but careful sin and tan sin(-x)=-sin(X) odd tan(-x)=-tan(x)odd
about*
so if cos (-x)= cos(x) then sec(-x)= ?
then sec(-x) would be sec(x), since sec is just the inverse function of cos
so -cos(-x)= ?
-cos(-x)= -cos(x)
yep! there is an identity to prove cos(-x)=cos(x) you'll learn n calc one i guess
funnnn
ye!
XD Thank you
np :=)
cos gives you the \(x\) value on the angle, |dw:1441072239511:dw| The bottom angle is the negative version of the top angle, but they both give the same x values.
I hope that makes sense.

Not the answer you are looking for?

Search for more explanations.

Ask your own question