The mass of a bucket full of water is 15 Kg. It is being pulled up from a 15m deep well. Due to a hole in bucket 6 Kg of water flows out. Find the work done in pulling it out of the well.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

The mass of a bucket full of water is 15 Kg. It is being pulled up from a 15m deep well. Due to a hole in bucket 6 Kg of water flows out. Find the work done in pulling it out of the well.

Physics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

**Assuming** the bucket is not accelerating and that the leakage is at a uniform rate per time (and thus distance) you can say that the mass of the buckets as it rises from distance z = 0 [bottom of well] to z = 15 [top of well] is \(m(z) = 15 - \frac{2}{5}z\). Check, z = 15, \(m(z) = 15 - \frac{2}{5}15 = 9 \ \checkmark \) from definition of work, \(W = \int F dz\) \(F = m(z) . g\) \(W = g \ \int_{z=0}^{15} 15 - \frac{2}{5}z \ dz \)
|dw:1441124550619:dw|
Ok, got it. Thanks a bunch c:

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

mp!

Not the answer you are looking for?

Search for more explanations.

Ask your own question