anonymous
  • anonymous
How do you find cos(11pi/6)?
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
misty1212
  • misty1212
HI!!
misty1212
  • misty1212
you need a good trig cheat sheet !
Michele_Laino
  • Michele_Laino
hint: we have: \[\Large \frac{{11\pi }}{6} = 2\pi - \frac{\pi }{6}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

misty1212
  • misty1212
Michele_Laino
  • Michele_Laino
so we can write: \[\Large \cos \left( {\frac{{11\pi }}{6}} \right) = \cos \left( {2\pi - \frac{\pi }{6}} \right)\]
misty1212
  • misty1212
find \(\frac{11\pi}{6}\) on the unit circle on the the last page of the cheat sheet, then look at the coordinates of the corresponding point the first coordinate is cosine
anonymous
  • anonymous
Thanks guys
misty1212
  • misty1212
\[\color\magenta\heartsuit\]
anonymous
  • anonymous
What if you need to find tangent?
Michele_Laino
  • Michele_Laino
you can apply this identity: \[\Large \begin{gathered} \tan \left( {\frac{{11\pi }}{6}} \right) = \tan \left( {2\pi - \frac{\pi }{6}} \right) = \hfill \\ \hfill \\ = \frac{{\tan \left( {2\pi } \right) - \tan \left( {\frac{\pi }{6}} \right)}}{{1 + \tan \left( {2\pi } \right)\tan \left( {\frac{\pi }{6}} \right)}} \hfill \\ \end{gathered} \]
anonymous
  • anonymous
How do you know tan(11pi/6) equals tan(2pi-pi/6)?

Looking for something else?

Not the answer you are looking for? Search for more explanations.