dumbsearch2
  • dumbsearch2
As you stop your car at a stoplight, a rock becomes wedged between the tire treads. As you pull away from the light, the distance between the rock and the pavement varies sinusoidally with the distance you have traveled. The period is the circumference of the wheel. Assuming that the diameter of the wheel is 24 inches, find an equation that will model the height of the rock above the pavement. A. y = -12cos(1/6(x)) + 12 B. y = -12cos(π/12(x)) + 12 C. y = -12cos(π/6(x)) + 12 D. y = -12cos(x/12) + 12
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Michele_Laino
  • Michele_Laino
if the period is given by the circumference of the wheel, then the angular frequency is: \[\Large \omega = \frac{{2\pi }}{T} = \frac{{2\pi }}{{2\pi R}} = \frac{1}{R} = \frac{1}{{12}}\] where R is the radius of the wheel
Michele_Laino
  • Michele_Laino
so, after a substitution, I get: \[\Large \begin{gathered} y\left( x \right) = - 12\cos \left( {\omega x} \right) + 12 = \hfill \\ \hfill \\ = - 12\cos \left( {\frac{x}{{12}}} \right) + 12 \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
of course, in our case the period T is measured in meters and not in seconds

Looking for something else?

Not the answer you are looking for? Search for more explanations.