IrishBoy123
  • IrishBoy123
l'Hopital not allowed
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
CookieGirl
  • CookieGirl
I'Hopital?..
IrishBoy123
  • IrishBoy123
\[\lim_{x\rightarrow 0} \frac{tanx - x}{x^3}\] [maybe i just don't know how to do a circumflex in latex]
Michele_Laino
  • Michele_Laino
hint: we can use the Taylor expansion, around x=0, for tan x function, so we can write this: \[\Large \begin{gathered} \tan x = x + \frac{{{x^3}}}{3} + o\left( {{x^4}} \right) \Rightarrow \tan x - x = \frac{{{x^3}}}{3} + o\left( {{x^4}} \right) \hfill \\ \hfill \\ \frac{{\tan x - x}}{{{x^3}}} = \frac{{\frac{{{x^3}}}{3} + o\left( {{x^4}} \right)}}{{{x^3}}} \to \frac{1}{3} \hfill \\ \end{gathered} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
`\hat{...}` for all your circumflex needs :) e.g. `\hat{f}` gives \(\large\hat{f}\), `\text{L'Hopit}\hat{\text{a}}\text{l}` gives \(\text{L'Hopit}\hat{\text{a}}\text{l}\)
anonymous
  • anonymous
Another approach, which is only valid provided you can prove the limit exists. Assume the limit is \(L\). Then \[L=\lim_{x\to0}\frac{\tan x-x}{x^3}=\lim_{x\to0}\left(\frac{\tan x}{x^3}-\frac{1}{x^2}\right)\] This next part is a bit hand-wavy, but it seems true at first glance (still thinking of a proof...), but I'm pretty sure that \[\lim_{x\to0}f(x)=L~~\implies~\lim_{x\to0}f(kx)=L\] for arbitrary \(k\neq0\). Now, I could be very wrong, but I'm thinking of how \(\lim\limits_{x\to0}\dfrac{\sin kx}{kx}=1\) for arbitrary \(k\neq0\). I have a good feeling this might be true. I'm going to use this "fact" and say that the following must also be true: \[L=\lim_{x\to0}\left(\frac{\tan 2x}{(2x)^3}-\frac{1}{(2x)^2}\right)\] The choice of \(k=2\) is arbitrary, I could have easily used any other real number, but this one is easiest to work with: \[\begin{align*} L&=\lim_{x\to0}\left(\frac{\tan 2x}{(2x)^3}-\frac{1}{(2x)^2}\right)\\[1ex] 8L&=\lim_{x\to0}\left(\frac{\tan 2x}{x^3}-\frac{2}{x^2}\right)\\[1ex] &=\lim_{x\to0}\left(\frac{\frac{2\tan x}{1-\tan^2x}}{x^3}-\frac{2}{x^2}\right)\\[1ex] 4L&=\lim_{x\to0}\left(\frac{\tan x}{x^3(1-\tan^2x)}-\frac{1}{x^2}\right)\\[1ex] 4L-L&=\lim_{x\to0}\left(\frac{\tan x}{x^3(1-\tan^2x)}-\frac{1}{x^2}\right)-\lim_{x\to0}\left(\frac{\tan x}{x^3}-\frac{1}{x^2}\right)\\[1ex] 3L&=\lim_{x\to0}\left(\frac{\tan x}{x^3(1-\tan^2x)}-\frac{\tan x}{x^3}\right)\\[1ex] &=\color{red}{\lim_{x\to0}\frac{\tan x}{x}}\lim_{x\to0}\left(\frac{1}{x^2(1-\tan^2x)}-\frac{1}{x^2}\right)\\[1ex] &=\color{red}1\times\lim_{x\to0}\frac{\tan^2x}{x^2(1-\tan^2x)}\\[1ex] &=\color{red}{\lim_{x\to0}\frac{\tan^2x}{x^2}}\lim_{x\to0}\frac{1}{1-\tan^2x}\\[1ex] &=1\\[1ex] L&=\frac{1}{3} \end{align*}\]
IrishBoy123
  • IrishBoy123
cool stuff!! and absolutely no need for the Hospital
IrishBoy123
  • IrishBoy123
\[\text{L'H} \hat{ \text{o}} \text{pital}\]
amilapsn
  • amilapsn
@SithsAndGiggles Would this be sufficient? \[\lim_{x\to 0}f(kx)=\lim_{kx\to 0}f(kx)=\lim_{X\to0}f(X)=\lim_{x\to 0}f(x)\]
anonymous
  • anonymous
@amilapsn yeah that should work for the "fact". As for proving whether the limit exists, we might be able to get away with the squeeze theorem, but I'm not seeing any obvious bounds...

Looking for something else?

Not the answer you are looking for? Search for more explanations.