clara1223
  • clara1223
find the limit at x approaches -5 of (30-6x)/(x+5) a) 12 b) 6 c) does not exist d) 0 e) -6/5
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
clara1223
  • clara1223
I already took a 6 out of the numerator so i have 6(-x+5)/(x+5)
LynFran
  • LynFran
\[\lim_{x \rightarrow -5}\frac{ (30-6x) }{ (x+5) }\]\[\lim_{x \rightarrow -5}\frac{ 6(5-x) }{ (x+5) }\]\[\lim_{x \rightarrow -5}\frac{ 6(5-(-5)) }{ (-5+5) }\]
LynFran
  • LynFran
u would get zero in the denominator so the limit DNE

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

clara1223
  • clara1223
But then you have a 0 in the denominator. So does the limit not exist?
clara1223
  • clara1223
Oh, thank you
anonymous
  • anonymous
Why isnt infinity included in your choices?
LynFran
  • LynFran
welcome
clara1223
  • clara1223
@joyraheb another way to say infinity or negative infinity is that the limit doesnt exist

Looking for something else?

Not the answer you are looking for? Search for more explanations.