find the limit at x approaches -5 of (30-6x)/(x+5) a) 12 b) 6 c) does not exist d) 0 e) -6/5

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

find the limit at x approaches -5 of (30-6x)/(x+5) a) 12 b) 6 c) does not exist d) 0 e) -6/5

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I already took a 6 out of the numerator so i have 6(-x+5)/(x+5)
\[\lim_{x \rightarrow -5}\frac{ (30-6x) }{ (x+5) }\]\[\lim_{x \rightarrow -5}\frac{ 6(5-x) }{ (x+5) }\]\[\lim_{x \rightarrow -5}\frac{ 6(5-(-5)) }{ (-5+5) }\]
u would get zero in the denominator so the limit DNE

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

But then you have a 0 in the denominator. So does the limit not exist?
Oh, thank you
Why isnt infinity included in your choices?
welcome
@joyraheb another way to say infinity or negative infinity is that the limit doesnt exist

Not the answer you are looking for?

Search for more explanations.

Ask your own question