anonymous
  • anonymous
@jdoe0001 @zepdrix How do you decompose (5x^3-x^2+8x-55)/(x^4+5x^3+11x^2) into partial fractions?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@Luigi0210 please help
anonymous
  • anonymous
First thing to do is factorize the denominator: \[x^4+5x^3+11x^2=x^2\left(x^2+5x+11\right)\] The second factor is irreducible in the reals as far as I can tell. Time for partial fractions: \[\frac{5x^3-x^2+8x-55}{x^2\left(x^2+5x+11\right)}=\frac{A}{x}+\frac{B}{x^2}+\frac{Cx+D}{x^2+5x+11}\] Find a common denominator for the RHS and combine the fractions: \[\frac{Ax\left(x^2+5x+11\right)+B\left(x^2+5x+11\right)+(Cx+D)x^2}{x^2\left(x^2+5x+11\right)}\] Expand and pair up the coefficients by power of the \(x\) term: \[\frac{Ax^3+5Ax^2+11Ax+Bx^2+5Bx+11B+Cx^3+Dx^2}{x^2\left(x^2+5x+11\right)}\] \[\frac{(A+C)x^3+(5A+B+D)x^2+(11A+5B)x+11B}{x^2\left(x^2+5x+11\right)}\] In the equation above, you need to have LHS = RHS, which means the coefficients of matching-power terms in the numerators must match: \[\begin{cases} A+C=5&x^3\text{ term}\\[1ex] 5A+B+D=-1&x^2\text{ term}\\[1ex] 11A+5B=8&x\text{ term}\\[1ex] 11B=-55&\text{constant term} \end{cases}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.