anonymous
  • anonymous
decide whether the equation is a trigonometric identity. sin^2(x)csc^2(x)=sin^2(x)+cos^2(x)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
zzr0ck3r
  • zzr0ck3r
What do we know that \(\cos^2(x)+\sin^2(x)=?\)
zzr0ck3r
  • zzr0ck3r
@Reid448
anonymous
  • anonymous
1

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
1
zzr0ck3r
  • zzr0ck3r
and \[\sin^2(x)*\csc^2(x)= \sin^2(x) * \frac{1}{\sin^2(x)}=?\]
anonymous
  • anonymous
and \[\sin ^{2}=\frac{ 1-\cos2x }{ 2 }\]
anonymous
  • anonymous
what you said also equals 1 so that makes this an identity
anonymous
  • anonymous
thanks very much
dinamix
  • dinamix
@zzr0ck3r i want ask u question how proof it sin^2(x) + cos^2(x) to---> sin^2(x) csc^2(x) cuz its relation equivalent
zzr0ck3r
  • zzr0ck3r
?
dinamix
  • dinamix
u understand my question or no ?
zzr0ck3r
  • zzr0ck3r
I don't think so.
dinamix
  • dinamix
i mean u proof it from one side only
zzr0ck3r
  • zzr0ck3r
we showed both sides equal 1
zzr0ck3r
  • zzr0ck3r
you understand @dinamix

Looking for something else?

Not the answer you are looking for? Search for more explanations.