Meehan98
  • Meehan98
In order to graph the following function: f(x)=log (subscript 2) (x+1), I know that from the parent function (log x), it's a horizontal shift to the left by 1, but I don't understand what to do with the subscript 2.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
freckles
  • freckles
\[f(x)=\log_{2}(x+1) \\ f(x)=\frac{\log(x+1)}{\log(2)}=\frac{1}{\log(2)} \log(x+1)\] it just means you have to scale the parent function
freckles
  • freckles
1/log(2) is positive so it will keep the same direction if that makes sense to you
mathmate
  • mathmate
recall: \(\large g(x)=a f(bx-h) + k\) a=vertical scale 1/b=horizontal scale h=horizontal (right) translation k=vertical (up) translation

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Meehan98
  • Meehan98
Ok, I think I understand that solution. In this equation: \[f(x)=\log _{3 }(\frac{ x }{ 4 })\] Do you follow the same steps? \[\frac{ \log \frac{ x }{ 4 } }{ \log3 }\]
Meehan98
  • Meehan98
Never mind! I got it now!:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.