gahm8684
  • gahm8684
Imaginary complex numbers
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
zzr0ck3r
  • zzr0ck3r
THEY ARE EVERYWHERE!!!!!
gahm8684
  • gahm8684
I've been asked to solve this equation, however when I get to certain step I get stuck and don't know what to do \[x^2+2x+3=0\]
zzr0ck3r
  • zzr0ck3r
What step?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

gahm8684
  • gahm8684
\[(-2\pm \sqrt{4-12})/2\]
gahm8684
  • gahm8684
my bad I meant \[-2\pm \sqrt{-8}/2\]
zzr0ck3r
  • zzr0ck3r
\[\sqrt{4-12}=\sqrt{-8}=\sqrt{-1*8}=\sqrt{-1}\sqrt{8}=i\sqrt{8}=i\sqrt{4*2}=i\sqrt{4}\sqrt{2}=2i\sqrt{2}\]
gahm8684
  • gahm8684
ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooohohohhohhohoohohohohohohohoohohohohohhhhhhhhhhhhhhhh
zzr0ck3r
  • zzr0ck3r
Yoou should end up with \(-1\pm i\sqrt{2}\)
gahm8684
  • gahm8684
I get it.
zzr0ck3r
  • zzr0ck3r
word
gahm8684
  • gahm8684
Thank you
zzr0ck3r
  • zzr0ck3r
np
gahm8684
  • gahm8684
How did you get the -1 tho
zzr0ck3r
  • zzr0ck3r
\(-8=-1*8\)
gahm8684
  • gahm8684
no, I'm talking about the one in -1pmisqrt(2)
zzr0ck3r
  • zzr0ck3r
\(\dfrac{-2\pm2i\sqrt{2}}{2}=\dfrac{-2}{2}\pm \dfrac{2i\sqrt{2}}{2}=-1\pm i\sqrt{2}\)
gahm8684
  • gahm8684
what about the 2i, what happened to the 2?
zzr0ck3r
  • zzr0ck3r
\[\dfrac{-2}{2}\pm\dfrac{2i\sqrt{2}}{2}=\dfrac{\cancel{-2}}{\cancel{2}}\pm\dfrac{\cancel{2}i\sqrt{2}}{\cancel{2}}=-1\pm i\sqrt{2}\]
zzr0ck3r
  • zzr0ck3r
\[\dfrac{ab+cb}{b}=a+c\]
gahm8684
  • gahm8684
alright I get it now thank you
zzr0ck3r
  • zzr0ck3r
np

Looking for something else?

Not the answer you are looking for? Search for more explanations.