anonymous
  • anonymous
Let g(x)=2x and h(x)=x^2+4. Find the value. (h o g) (1) How do you do this?
Algebra
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Nnesha
  • Nnesha
first) substitute x for 1 into g(x) function :D
Nnesha
  • Nnesha
(h o g) meaning find \[\huge\rm h(\color{red}{g(1)})\]
anonymous
  • anonymous
Oh ok

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Nnesha
  • Nnesha
\[\huge\rm g(\color{reD}{1})=2\color{ReD}{x}\] replace x with 1
anonymous
  • anonymous
On the other side as well or only on the left?
jdoe0001
  • jdoe0001
\(\bf {\color{brown}{ g(x) }}=2x\qquad h(x)=x^2+4\qquad (h\circ g)(x) \iff h(\ {\color{brown}{ g(x)}}\ ) \\ \quad \\ h(\ {\color{brown}{ g(x)}}\ )={\color{brown}{ g(x)}}^2+4\implies h(\ {\color{brown}{ g(x)}}\ )={\color{brown}{ (2x)}}^2+4\)
anonymous
  • anonymous
Ah ok
anonymous
  • anonymous
And then do I keep simplifying to get a final number?
Nnesha
  • Nnesha
well right side g(x) is same as y
anonymous
  • anonymous
Thank you

Looking for something else?

Not the answer you are looking for? Search for more explanations.