anonymous
  • anonymous
Solve using S=r(theta) Radians Central Angle Arc Length ? Pie over 3 radians 3/2 m
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I know im solving for 'r' but i just dont know how to do it.
welshfella
  • welshfella
S = arc length, theta = pi/3 and r = ? 3/2 = r * pi/3 multiply both sides of the equation by 3/pi
welshfella
  • welshfella
this will make the right hand side = r so the answer will be on left hand side

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Multiply by 3/pi or pi/3?
welshfella
  • welshfella
by 3/pi
welshfella
  • welshfella
because r * pi/3 * 3/pi = r
anonymous
  • anonymous
Oooo ok thanks!
welshfella
  • welshfella
then LHS will be 3/2 * 3/pi
welshfella
  • welshfella
|dw:1441236652200:dw|
anonymous
  • anonymous
9/2pi??

Looking for something else?

Not the answer you are looking for? Search for more explanations.