anonymous
  • anonymous
For the equation X^2+y^2-6x-8y-11=0, do the following. A) find the center (h,k) and radius r of the circle. B) graph the circle C) find the intercepts, if any
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
jdoe0001
  • jdoe0001
hmm do you know what a "perfect square trinomial" is? sometimes just called a "perfect square"
anonymous
  • anonymous
um..yes
jdoe0001
  • jdoe0001
ok.... let us do some grouping first then \(\bf x^2+y^2-6x-8y-11=0 \\ \quad \\ (x^2-6x)+(y^2-8y)=11 \\ \quad \\ (x^2-6x+{\color{red}{ \square }}^2)+(y^2-8y+{\color{red}{ \square }}^2)=11\) any ideas on waht's missing from those groups to get a "perfect square trinomial"?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
36, 64
jdoe0001
  • jdoe0001
hmm 36 and 64 so... 36 square root is 6 so if we multiply 2 * x * 6, we should get the middle term well 2 * x * 6 \(\ne=6x\) though
jdoe0001
  • jdoe0001
or using 64, square root is 8 2 * y * 8 \(\ne 8y\) middle term either
anonymous
  • anonymous
ok
jdoe0001
  • jdoe0001
so.. what do you think they might be? you were quite close though
anonymous
  • anonymous
3 and 4
jdoe0001
  • jdoe0001
came out a bit off.. lemme fix it quick
anonymous
  • anonymous
its ok. I get the idea thank you so much
jdoe0001
  • jdoe0001
keep in mind that, all we're doing is, borrowing from out good fellow, Mr Zero, 0 so if we ADD \(3^2\ and\ 4^2\) we also have to SUBTRACT \(3^2\ and\ 4^2\) thus \(\bf x^2+y^2-6x-8y-11=0 \\ \quad \\ (x^2-6x)+(y^2-8y)=11 \\ \quad \\ (x^2-6x+{\color{red}{ 3 }}^2)+(y^2-8y+{\color{red}{ 4 }}^2)-{\color{red}{ 3}}^2-{\color{red}{ 4}}^2=11 \\ \quad \\ (x-3)^2+(y-4)^2-9-16=11 \\ \quad \\ (x-3)^2+(y-4)^2=11+9+16 \\ \quad \\ (x-3)^2+(y-4)^2=36\implies (x-{\color{brown}{ 3 }})^2+(y-{\color{blue}{ 4}})^2={\color{purple}{ 6}}^2 \\ \quad \\ \quad \\ (x-{\color{brown}{ h}})^2+(y-{\color{blue}{ k}})^2={\color{purple}{ r}}^2 \qquad center\ ({\color{brown}{ h}},{\color{blue}{ k}})\qquad radius={\color{purple}{ r}}\) see the center and radius now?
jdoe0001
  • jdoe0001
and to find any intercepts say y-intercept, set x = 0 \(\bf x^2+y^2-6x-8y-11=0\implies (0)^2+y^2-6(0)-8y-11=0 \\ \quad \\ y^2-8y-11=0\impliedby \textit{solve for "y"} \\ \quad \\ \textit{to get the x-intercept, set y=0} \\ \quad \\ x^2+(0)^2-6x-8(0)-11=0 \\ \quad \\ x^2-6x-11=0\impliedby \textit{solve for "x"}\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.