Michele_Laino
  • Michele_Laino
Tutorial: Sign of a permutation and the Ricci tensor
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Michele_Laino
  • Michele_Laino
Let's consider the symmetric group \(S_3\), namely the group of bijective applications, also called \emph{permutations}, of the set \(\{ 1,2,3\} \). A generic element of that group, can be written as below: \[\sigma :\{ 1,2,3\} \to \{ 1,2,3\} ,\quad \sigma = \left( {\begin{array}{*{20}{c}} 1&2&3 \\ i&j&k \end{array}} \right)\] where, of course, \(i,j,k\) \(\in \{ 1,2,3\} \). Each entry of the second row, is the image of the corresponding element of the first row: \[\sigma \left( 1 \right) = i,\quad \sigma \left( 2 \right) = j,\quad \sigma \left( 3 \right) = k\] In general, we can write a permutation, omitting the first row, so we will write the images of a permutation \(\sigma \), like below: \[i\quad j\quad k\] being: \(i,j,k \in \{ 1,2,3\} \). \\ To each permutation of ${S_3}$, can be assigned a number, namely its \emph{sign}, whose definition is: \[\operatorname{sgn} \left( \sigma \right):\quad {S_3} \to \left\{ { + 1, - 1} \right\}\] we say that the sign of a permutation is 1, if we need of an \emph{even} number of swaps in order to go from that permutation to the identical permutation, and the sign of a permutation is ${ - 1}$, if we need of an \emph{odd} number of swaps, in order to go from that permutation to the identical permutation. A swap is the permutation which change only two elements, here is an example of swap: \[\left( {\begin{array}{*{20}{c}} 1&2&3 \\ 1&3&2 \end{array}} \right)\] \\ whereas, the identical permutation is denoted like below: \[Id = \left( {\begin{array}{*{20}{c}} 1&2&3 \\ 1&2&3 \end{array}} \right)\] or, simply like this: \[1\quad 2\quad 3\] As we well know, the elements of the set ${S_3}$ is equal to $3! = 6$, so we have 6 permutation in total, here they are: \[\begin{array}{*{20}{c}} 1&2&3&{}&{}&2&1&3 \\ 2&3&1&{}&{}&3&2&1 \\ 3&1&2&{}&{}&1&3&2 \end{array}\] At the left we have written all permutations which whose sign is \(+ 1\), whereas at the right, we have written all permutations whose sign is \(- 1\). We can go from right to left and from left to right, by simply making one swap, as we can check immediately. In physics, and in particular in classical mechanics, the sign of a permutation, is denoted with the \(Ricci tensor\): \[{\varepsilon _{ijk}}\] so we can write this: \[\begin{gathered} {\varepsilon _{123}} = {\varepsilon _{231}} = {\varepsilon _{312}} = + 1 \hfill \\ {\varepsilon _{213}} = {\varepsilon _{321}} = {\varepsilon _{132}} = - 1 \hfill \\ \end{gathered} \] which are the only non-zero components of such tensor, among the {27} components of \({\varepsilon _{ijk}}\). \(Application\) Let \(\mathbf{a},\;\mathbf{b}\) two generic vectors, of the euclidean space \(E\), then let's consider its vector product or cross product, namely the subsequent map: \[{\mathbf{ \times }}\;:\;E \times E \to E\quad \left( {{\mathbf{a}},\;{\mathbf{b}}} \right) \to {\mathbf{a}} \times {\mathbf{b}}\] then, using the Ricci's tensor, we can write the \(i-th\) component of the vector \(\mathbf{a} \times \mathbf{b}\), like below: \[{\left( {{\mathbf{a}} \times {\mathbf{b}}} \right)_i} = \sum\limits_{j,k = 1}^3 {{\varepsilon _{ijk}}\;{a_j}{b_k}} \] and since the indexes \(j,\; k\) are repeated, we can omit the symbol of summation (\(Einstein \; convention)\): \[{\left( {{\mathbf{a}} \times {\mathbf{b}}} \right)_i} = {\varepsilon _{ijk}}\;{a_j}{b_k}\] The Ricci's tensor satisfies an important identity: \[{\varepsilon _{ijk}}\;{\varepsilon _{ilm}} = {\delta _{jl}}{\delta _{km}} - {\delta _{jm}}{\delta _{kl}}\] where \(\delta _{ij}\) is the \(Kronecker's symbol\). Finally, from the previous discussion, we have this other property of the Ricci's tensor: \[\begin{gathered} {\varepsilon _{ijk}} = - {\varepsilon _{jik}} \hfill \\ {\varepsilon _{ijk}} = - {\varepsilon _{ikj}} \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
here is the corresponding PDF file:
1 Attachment
zzr0ck3r
  • zzr0ck3r
Can you prove that every permutation can be written in either all even transposes or all odd ? I was curious about that.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
whoa
Michele_Laino
  • Michele_Laino
thanks :) :) @77777jeannie77777
anonymous
  • anonymous
lol youre welcome i will never understand that lol im not in that level of math and i hope i wont be anytime soon hahaha :P
Michele_Laino
  • Michele_Laino
thanks again!! :) yes! sure one day you will understand it and you will write another tutorial, better than mine @77777jeannie77777
Astrophysics
  • Astrophysics
Awesome, thanks for sharing @Michele_Laino
Michele_Laino
  • Michele_Laino
thanks!! :) @Astrophysics
linknissan
  • linknissan
Richi
Empty
  • Empty
I thought the Ricci tensor was a contraction of the Riemann-Christoffel tensor and this was the Levi-Civitta tensor.

Looking for something else?

Not the answer you are looking for? Search for more explanations.