anonymous
  • anonymous
How to exchange the integral order, i can't solve this problem. ∫∫ xy dxdy, D = {(x,y) | -2 <= y <= 4, (y^2-6)/2 <= x <= y+1}
OCW Scholar - Multivariable Calculus
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
phi
  • phi
Here is a plot of the region, showing a "typical" rectangle as we integrate x first.
1 Attachment
phi
  • phi
If we integrate dy first, then we evidently have to break the problem into two regions. from x=-3 to -1, and then from x=-1 to 5
1 Attachment
phi
  • phi
from the lower limit (in the original problem) \[ x= y^2 -6 \] we get \[ y= \pm \sqrt{x+6} \] in the region between x=-3 and x=-1, evidently the lower limit is \( y=- \sqrt{x+6}\) and the upper limit is \( y= \sqrt{x+6} \) and we have \[ \int_{-3}^{-1} \int_{- \sqrt{x+6}}^{+ \sqrt{x+6}} x y\ dy \ dx \] once we get to x=-1 we change the lower limit on y. we originally had x=y+1, from which we get y= x-1 the second iterated integral is \[ \int_{-1}^{5} \int_{x-1}^{+ \sqrt{x+6}} x y\ dy \ dx \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.