Pulsified333
  • Pulsified333
Assume that X={E,G,B,C} and Y={7,3,6,5}. A code consists of 2 different symbols selected from X followed by 3 not necessarily different symbols from Y. How many different codes are possible?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
kropot72
  • kropot72
The number of permutations of the four different letters taken two at a time, without repetitions is 4P2. The number of permutations of the four different numbers taken three at a time, with repetitions is 4^3. The total number of different codes that are possible is given by: \[\large \frac{4\times3\times2\times1}{2}\times4^{3}=you\ can\ calculate\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.