Destinyyyy
  • Destinyyyy
Help..
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Destinyyyy
  • Destinyyyy
Find the real solutions of the equation. 4x^2/3 -11x^1/3 -3=0
Destinyyyy
  • Destinyyyy
@Nnesha @IrishBoy123
campbell_st
  • campbell_st
ok.. so this is an equation that can be written as a quadratic use a substitution \[u = x^{\frac{1}{3}}\] so the equation is \[4u^2 - 11u - 3 = 0\] this can be factored to (4u + 1)(u - 3) = 0 so then solve for u... does that make sense so far...?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Destinyyyy
  • Destinyyyy
So I can do substitution? Okay
campbell_st
  • campbell_st
yes... that is the easiest method to solve this equation when you get the solutions for u, then let the solutions equal \[x^{\frac{1}{3}}\]
campbell_st
  • campbell_st
then you can solve for x
Destinyyyy
  • Destinyyyy
Yes I know that.. I assumed I couldn't solve that way since it didnt say I could
Destinyyyy
  • Destinyyyy
u= -1/4 and u= 3
campbell_st
  • campbell_st
well it will give the real solutions... I'd always treat questions of this type as quadratics.... so you need to solve \[x^{\frac{1}{3}} = -\frac{1}{4},~~and~~~~, x^{\frac{1}{3}} = 1\]
Destinyyyy
  • Destinyyyy
So x= 32 and 27 correct?
Destinyyyy
  • Destinyyyy
Oops. -1/64, 27
campbell_st
  • campbell_st
yes that's a lot better
Destinyyyy
  • Destinyyyy
Thank you.

Looking for something else?

Not the answer you are looking for? Search for more explanations.