Loser66
  • Loser66
The pentagonal numbers p1, p2, p3,....pk are the integers that count the number of dots in k nested pentagon, as shown in the figure ( in comment) Show that p1 =1 and \(p_k =p_{k-1}+ (3k -2) \) for \(k\geq 2\). Conclude that \(\sum_{k=1}^n (3k -2)\) and evaluate this sum to find a simple formula for \(p_n\) Please help
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Loser66
  • Loser66
|dw:1441327970207:dw|
beginnersmind
  • beginnersmind
If you look at the figure you can see that at every step you're basically lengthening the bottom edges by one, and adding 3 edges with k dots each. So at every step you add 2+3k-4 dots. The -4 represents the fact that we double counted the 4 vertices we added. This gives the rule p_k+1 = p_k + 3k-2. For evaluating the sum you can use the sum formula for arithmetic sequences.

Looking for something else?

Not the answer you are looking for? Search for more explanations.