1018
  • 1018
integrate cos^2(x) dx
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
UnkleRhaukus
  • UnkleRhaukus
\[\int\cos^2x\,\mathrm dx = \int\frac{1+\cos2x}{2}\,\mathrm dx \\ \hspace{5em}= \frac12\int\,\mathrm dx +\frac12\int\cos2x\,\mathrm dx\\ \hspace{5em}=\]
1018
  • 1018
hey thanks! but can you explain the first part? how did that become a fraction? is that a formula?
1018
  • 1018
oh and also please the whole of it. haha. the 1 + and then if i should always bring down the exponent

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

1018
  • 1018
thanks
UnkleRhaukus
  • UnkleRhaukus
from \[\cos(a)\cos(b)= \frac12\Big[\cos(a-b)+\cos(a+b)\Big]\] where, \(a=b=x\) \[\cos(x)\cos(x)= \frac12\Big[\cos(x-x)+\cos(x+x)\Big]\] \[\cos^2(x)= \frac12\Big[1+\cos(2x)\Big]\]
UnkleRhaukus
  • UnkleRhaukus
its probable a good idea to bring down the exponent with the 'Power Reducing Formula', (that i still have to look up every time) there might be another way
UnkleRhaukus
  • UnkleRhaukus
*probably
1018
  • 1018
ok, i think i got it. i also looked up the power reducing formula. thanks!

Looking for something else?

Not the answer you are looking for? Search for more explanations.