ghdoru11
  • ghdoru11
Find the Fourier expansion for: f:R->R periodic T=2pi , f(x)=3x, x is between [-pi,pi]
Differential Equations
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
beginnersmind
  • beginnersmind
Why was this question closed?
ghdoru11
  • ghdoru11
no one solve this and i have another question
beginnersmind
  • beginnersmind
Anyway you can just go back to the definition of fourier coefficients: \[a_n = \int_{-\pi}^{\pi} 3x*sin(nx)dx\] \[b_n = \int_{-\pi}^{\pi} 3x*cos(nx)dx\] then evaluate the integrals. Use the substitution t = nx and integration by parts with u being the linear term and v' the trigonometeric part.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

IrishBoy123
  • IrishBoy123
yeah, and it's odd so you ignore the cosine term
beginnersmind
  • beginnersmind
Right, that saves a lot of work :)
ghdoru11
  • ghdoru11
so just the first integral is neded?
beginnersmind
  • beginnersmind
Yes, \(b_n\) = 0 for every n.
ghdoru11
  • ghdoru11
thank you so much guys

Looking for something else?

Not the answer you are looking for? Search for more explanations.