pokiedokie
  • pokiedokie
|3x-2|+4 < (less than or equal to) 7 1/2|x+2|>6 can you please answer these with a guide/steps through it? i'm doing a study guide and need a little help
Algebra
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

LynFran
  • LynFran
wat do u have to do here?
LynFran
  • LynFran
and r those separate equality
LynFran
  • LynFran
?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

pokiedokie
  • pokiedokie
solve the inequality, and then i can graph the solution on my own
pokiedokie
  • pokiedokie
yes
LynFran
  • LynFran
ok
LynFran
  • LynFran
\[|3x-2|+4\le7\]\[|3x-2|+4-4\le 7-4\]\[|3x-2|\le7-4\]\[|3x-2|\le3\]\[(3X-2)\le \pm 3\]
LynFran
  • LynFran
\[3x-2 \le 3\]\[3x-2+2 \le 3+2\]\[3x \le 5\]\[x \le 5/3\]
LynFran
  • LynFran
and \[3x-2 \le -3\]\[3x-2+2 \le -3+2\]\[3x \le -1\]\[x \le -1/3\]
pokiedokie
  • pokiedokie
thank you so much!! this helps a lot
LynFran
  • LynFran
ok for the 2nd inequality you can start by dividing both sides by 1/2...since 1/2 is being multiply to the absolute sign...
LynFran
  • LynFran
u will have |x+2|>12 and the steps are like the first inequality
pokiedokie
  • pokiedokie
ahh okay, i see. thank you
LynFran
  • LynFran
welcome

Looking for something else?

Not the answer you are looking for? Search for more explanations.