clara1223
  • clara1223
find the limit as x approaches 0 of (1-(100/x^2))/(1+(100/x^2))
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

clara1223
  • clara1223
\[\lim_{x \rightarrow 0}\frac{ 1- \frac{ 100 }{ x ^{2} }}{ 1+\frac{ 100 }{ x ^{2} } }\]
amistre64
  • amistre64
multiply by x^2/x^2 to clear those fractions if they annoy you
clara1223
  • clara1223
so then im left with \[\frac{ x ^{2}-100 }{ x ^{2}+100 }\] correct?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
so far so good
clara1223
  • clara1223
could I substitute x for 0 and get -100/100 which is -1? or is there more simplifying required?
amistre64
  • amistre64
thats as simple as it gets ...
amistre64
  • amistre64
the other way we simply leave x^2 where it is at, and get (1-inf)/(1+inf) = -(inf/inf) = -1 as a lazy trial lol
anonymous
  • anonymous
Refer to the attachment from the Mathematica program.
1 Attachment

Looking for something else?

Not the answer you are looking for? Search for more explanations.