En
  • En
PLEASE HELP! find the derivative of w=sin^4ycos^4y. my final answer is 4sin^3cos^3y * cos2y. but the answer written in my book is 1/2sin^3 (2y)cos(2y)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
freckles
  • freckles
I recommend using the double angle identity first to rewrite w then differentiate
freckles
  • freckles
\[\sin(2y)=2 \sin(y) \cos(y) \\ \frac{1}{2} \sin(2y)=\sin(y) \cos(y) \\ w=( \frac{1}{2} \sin(2y))^4 \]
En
  • En
w = sin^4y cos^4y dw/dy = 4 sin^3y* cos^5y - 4 cos^3y* sin^5y = 4 sin^3y cos^3y[ cos^2y - sin^2y] = 4 sin^3y cos^3y * cos2y = 1/2*(2siny cosy)^3 * cos2y = 1/2 sin^3(2y) cos2y someone answere it this way... i just dont get where the 1/2 came from.. please explain

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

freckles
  • freckles
\[2\sin(y)\cos(y)=\sin(2y)\]
freckles
  • freckles
oh you used that
anonymous
  • anonymous
@En dont copy and past from yahoo answers.. its best to solve them yourself for you can learn more.
anonymous
  • anonymous
http://www.wolframalpha.com/input/?i=derivative+of+sin^4y+cos^4y
freckles
  • freckles
\[4=\frac{1}{2}(2)^3 \text{ they just rewrote 4 }\]
En
  • En
@freckles tnx!
freckles
  • freckles
np i was kind of confused at first i thought it was your solution
freckles
  • freckles
@En I feel like that first way I suggested might be a little easier
En
  • En
i solved the 4sin^3cos^3y * cos2y i just got confused in the simplifying process :)
freckles
  • freckles
\[w=(\frac{1}{2} \sin(2y))^4 \\ w'=4(\frac{1}{2}\sin(2y))^{3}(\frac{1}{2} \sin(2y))' \\ w'=4(\frac{1}{2}\sin(2y))^3 \frac{1}{2} \cdot 2 \cos(2y) \\ w'=4 (\frac{1}{2})^3 \sin^3(2y) \cos(2y) \\ w'=\frac{4}{8} \sin^3(2y) \cos(2y) \\ w'=\frac{1}{2} \sin^3(2y) \cos(2y)\] just a whole bunch of chain rule
En
  • En
Where did you get the w=1/2sin(2y))^4? @freckles
freckles
  • freckles
the double angle identity 2sin(y)cos(y)=sin(2y) so sin(y)cos(y)=1/2*sin(2y)
freckles
  • freckles
so (sin(y) cos(y))^4=(1/2*sin(2y))^4
freckles
  • freckles
and (sin(y) cos(y))^4=sin^4(y)*cos^4(y)
En
  • En
where did the "1/2" came from?
freckles
  • freckles
2sin(y)cos(y) is equal to sin(2y) do you understand this part?
freckles
  • freckles
divide both sides by 2 sin(y)cos(y) is equal to 1/2*sin(2y)
En
  • En
yes

Looking for something else?

Not the answer you are looking for? Search for more explanations.