En
  • En
PLEASE HELP!!!!!!!!! find the derivative of z=1/2x+1/4 sin2x. i only got 1/2+1/2 cos2x but my book says the answer is cos^2x... pleaaseee explain it to me.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Loser66
  • Loser66
I think IrishBoy explained you already, right? they are the same.
En
  • En
i still dont get it.. i tried using the double angle but i only get 2cos^2x :/
Loser66
  • Loser66
\(cos (2x) =2cos^2(x) -1\\2cos^2(x) = cos (2x) +1\\cos^2(x) = \dfrac{cos(2x) +1}{2}= \dfrac{1}{2}+\dfrac{cos(2x)}{2}\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

En
  • En
so the only equivalent of cos(2x) is can use is 2cos^2x-1? i cant use the \[\cos2x=\cos^2x-\sin^2x\] ?
Loser66
  • Loser66
Yes, just take one more step : sin^2 = 1 - cos^2 to get cos (2x) = cos^2 - 1+ cos^2 = 2cos^2 -1
Loser66
  • Loser66
it is back to my comment.
En
  • En
\[=1/2(1+\cos^2x-\sin^2x) =1/2(\cos^2x+\cos^2x)=1/2(2\cos^2x)=\cos^2x\] is this fine?
En
  • En
@Loser66 ?
Loser66
  • Loser66
Fine
En
  • En
thanks :) sorry for the trouble.

Looking for something else?

Not the answer you are looking for? Search for more explanations.