En
  • En
PLEASE HELP! find the derivative of sin(arccosx).
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
En
  • En
\[=\frac{ -\cos(arccosx) }{ \sqrt{1-x^2}}\] i only got this far.. please the answer is -x/sqrt1-x^2.
amistre64
  • amistre64
y = sin(acos(x)) asin(y) = acos(x) ... now i gotta recall atrigs :/ ------------------- u = asin(y) sin(u) = y cos(u) u' = y' u' = y'/cos(u) = y'/sqrt(1-sin^2(u)) u' = y'/sqrt(1-y^2) ----------------- w = acos(x) cos(w) = x -sin(w) w' = 1 w' = -1/sin(w) = -1/sqrt(1-cos^2(w)) w' = -1/sqrt(1-x^2) ------------------------ u = w u' = w' therefore asin(y) = acos(x) y'/sqrt(1-y^2) = -1/sqrt(1-x^2) y' = -sqrt(1-y^2)/sqrt(1-x^2) ---------------- this is what im getting without further simplifiactions, and assuming i kept track of it all
amistre64
  • amistre64
i wonder if: sqrt(1-y^2) = x

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

beginnersmind
  • beginnersmind
@amistre64 we should simplify the expression sin(arccos x)
amistre64
  • amistre64
sounds like something smart to do :)
En
  • En
\[=\frac{ -x }{ \sqrt{1-x^2}}\] is the answer from my book
beginnersmind
  • beginnersmind
Like this|dw:1441470217632:dw|
beginnersmind
  • beginnersmind
There might be some additional work in justtifying the sign for any angle.
En
  • En
i dont know how it became \[=-x/\sqrt{1-x^2}\]
anonymous
  • anonymous
\[y=\sin \left( \cos^{-1} x \right)=\cos \left( \cos^{-1} x \right)*\frac{ -1 }{ \sqrt{1-x^2} }\] \[=-\frac{ x }{ \sqrt{1-x^2} }\]
En
  • En
@surjithayer how come cos(arccosx) became x?
anonymous
  • anonymous
-cos(arccos(x)) = -x
anonymous
  • anonymous
correction \[\frac{ dy }{ dx }=\cos \left( \cos^{-1} x \right)*\frac{ -1 }{ \sqrt{1-x^2} }\] =?
anonymous
  • anonymous
arccos(x) has ratio x as an input and gives an angle, say \(\theta\). well the cos(\(\theta\)) = x
En
  • En
thanks i get it now :)
anonymous
  • anonymous
\[\frac{ d }{ dx }\sin \left( \cos^{-1} \left( x \right) \right)=\cos \left( \cos^{-1} \left( x \right) \right)\cdot \frac{ d }{ dx }\cos^{-1} \left( x \right) \]\[\Rightarrow \cos \left( \cos^{-1} \left( x \right) \right)\cdot \frac{ -1 }{ \sqrt{1-x^2} } =x \cdot \frac{ -1 }{ \sqrt{1-x^2}}=\frac{ -x }{ \sqrt{1-x^2} }\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.