If \(x\) and \(y\) are real and \(x^2 + y^2 = 1\), compute the maximum value of \((x+y)^2.\)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

If \(x\) and \(y\) are real and \(x^2 + y^2 = 1\), compute the maximum value of \((x+y)^2.\)

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1441474466693:dw|
hint-this is the equation of a circle with center at origin
lagrange multiplier

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[x^2+y^2=1 \Rightarrow y^2 = 1 - x^2\] \[(x+y)^2 = x^2+2xy+y^2=x^2+y^2+2xy=1+2xy=1+2x \sqrt{1-x^2}\]to maximize, differentiate w.r.t. x =>\[\frac{ d }{ dx }\left[ \left( x+y \right)^2 \right]=\frac{ d }{ dx }\left[ 1+2x\sqrt{1-x^2} \right]=2\sqrt{1-x^2}-2x\cdot \frac{ 2x }{ \sqrt{1-x^2} }=0\]=>\[2(1-x^2)-4x = 0 \Rightarrow x^2+2x-1=0 \Rightarrow x= -1\pm \sqrt2 \]
or you may use AM-GM inequality \[\begin{align}(x+y)^2 &= x^2 + y^2 + \color{red}{2xy}\\~\\ &\le x^2 + y^2 + \color{red}{x^2+y^2}\\~\\ &= 1+1 \end{align}\]
AM-GM?
(x-0)^2 +(y-0)^2 = sqrt(1) center=(0,0) radius r = 1 so u can use parametric form to denote any point x,y which lies on it like- x=x1 + rcos(theta) y=y1+rsin(theta) |dw:1441474744572:dw| x1,y1=0,0 so x= rcos(theta) y=rsin(theta) nd u need to find max of (x+y)^2 \[(rcos \theta+rsin \theta)^2 \] rcos(theta) + rsin(theta) ranges frm -sqrt(r) to + sqrt(r) so max value of rcostheta +rsintheta gives max of (x+y)^2 nd we knw r=1 so (1)^2 =1
fir \(x,y\in \mathbb{R}\) we have : \((x-y)^2 \ge 0 \\\implies x^2+y^2 -2xy \ge 0 \implies 2xy \le x^2+y^2 \) so, \[\begin{align}(x+y)^2 &= x^2 + y^2 + \color{red}{2xy}\\~\\ &\le x^2 + y^2 + \color{red}{x^2+y^2}\\~\\ &= 1+1 \end{align}\]
if x = sqrt(2)/2 = y then (x+y)^2 = 2
1 is not max.
2 is max.
what does AM-GM stand for?
what mistake did i made?
https://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means
max of rcostheta + rsintheta = sqrt(2)/2 + sqrt(2)/2 = sqrt(2) => max = (sqrt(2))^2 = 2
aww not again!! thanks :)
so max of of rcos(theta)+rsin(theta) will not be 1 :P it is root(2) nd pluggin it in (x+y)^2 u get 2 as the answer :)
\(g(x,y) = x^2 + y^2 - 1\) \(f(x,y) = (x+y)^2 = 1 +2xy\) \(\nabla f = <2y, 2x>\) \(\nabla g = <2x, 2y>\) \(\nabla f = \lambda \nabla g \implies \lambda = \frac{y}{x} = \frac{x}{y}\) \(\implies x^2 = y^2\) \(2x^2 = 1, \ \ \ \ x = \frac{1}{\sqrt{2}} = y\) \(f_{max} = 2\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question