zmudz
  • zmudz
If \(x\) and \(y\) are real and \(x^2 + y^2 = 1\), compute the maximum value of \((x+y)^2.\)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
triciaal
  • triciaal
|dw:1441474466693:dw|
imqwerty
  • imqwerty
hint-this is the equation of a circle with center at origin
IrishBoy123
  • IrishBoy123
lagrange multiplier

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[x^2+y^2=1 \Rightarrow y^2 = 1 - x^2\] \[(x+y)^2 = x^2+2xy+y^2=x^2+y^2+2xy=1+2xy=1+2x \sqrt{1-x^2}\]to maximize, differentiate w.r.t. x =>\[\frac{ d }{ dx }\left[ \left( x+y \right)^2 \right]=\frac{ d }{ dx }\left[ 1+2x\sqrt{1-x^2} \right]=2\sqrt{1-x^2}-2x\cdot \frac{ 2x }{ \sqrt{1-x^2} }=0\]=>\[2(1-x^2)-4x = 0 \Rightarrow x^2+2x-1=0 \Rightarrow x= -1\pm \sqrt2 \]
ganeshie8
  • ganeshie8
or you may use AM-GM inequality \[\begin{align}(x+y)^2 &= x^2 + y^2 + \color{red}{2xy}\\~\\ &\le x^2 + y^2 + \color{red}{x^2+y^2}\\~\\ &= 1+1 \end{align}\]
anonymous
  • anonymous
AM-GM?
imqwerty
  • imqwerty
(x-0)^2 +(y-0)^2 = sqrt(1) center=(0,0) radius r = 1 so u can use parametric form to denote any point x,y which lies on it like- x=x1 + rcos(theta) y=y1+rsin(theta) |dw:1441474744572:dw| x1,y1=0,0 so x= rcos(theta) y=rsin(theta) nd u need to find max of (x+y)^2 \[(rcos \theta+rsin \theta)^2 \] rcos(theta) + rsin(theta) ranges frm -sqrt(r) to + sqrt(r) so max value of rcostheta +rsintheta gives max of (x+y)^2 nd we knw r=1 so (1)^2 =1
ganeshie8
  • ganeshie8
fir \(x,y\in \mathbb{R}\) we have : \((x-y)^2 \ge 0 \\\implies x^2+y^2 -2xy \ge 0 \implies 2xy \le x^2+y^2 \) so, \[\begin{align}(x+y)^2 &= x^2 + y^2 + \color{red}{2xy}\\~\\ &\le x^2 + y^2 + \color{red}{x^2+y^2}\\~\\ &= 1+1 \end{align}\]
anonymous
  • anonymous
if x = sqrt(2)/2 = y then (x+y)^2 = 2
anonymous
  • anonymous
1 is not max.
anonymous
  • anonymous
2 is max.
anonymous
  • anonymous
what does AM-GM stand for?
imqwerty
  • imqwerty
what mistake did i made?
ganeshie8
  • ganeshie8
https://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means
anonymous
  • anonymous
max of rcostheta + rsintheta = sqrt(2)/2 + sqrt(2)/2 = sqrt(2) => max = (sqrt(2))^2 = 2
imqwerty
  • imqwerty
aww not again!! thanks :)
imqwerty
  • imqwerty
so max of of rcos(theta)+rsin(theta) will not be 1 :P it is root(2) nd pluggin it in (x+y)^2 u get 2 as the answer :)
IrishBoy123
  • IrishBoy123
\(g(x,y) = x^2 + y^2 - 1\) \(f(x,y) = (x+y)^2 = 1 +2xy\) \(\nabla f = <2y, 2x>\) \(\nabla g = <2x, 2y>\) \(\nabla f = \lambda \nabla g \implies \lambda = \frac{y}{x} = \frac{x}{y}\) \(\implies x^2 = y^2\) \(2x^2 = 1, \ \ \ \ x = \frac{1}{\sqrt{2}} = y\) \(f_{max} = 2\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.