En
  • En
HELP! please prove that Arctan(-x)= - Arctanx
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
zepdrix
  • zepdrix
I'd prolly just do the same thing as the last one :o\[\large\rm y=-\arctan(x)\]\[\large\rm -y=\arctan(x)\]\[\large\rm \tan(-y)=x\]Since tangent is an odd function,\[\large\rm \tan(-y)=-\tan(y)=x\]\[\large\rm \tan(y)=-x\]\[\large\rm y=\arctan(-x)\]
zepdrix
  • zepdrix
Lot of weird little steps in that though :D
En
  • En
thanks :)))

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

En
  • En
@zepdrix what do you mean to that the tangent is an odd function?
zepdrix
  • zepdrix
An odd function satisfies this property:\[\large\rm f(-x)=-f(x)\]Examples:\[\large\rm f(x)=x^3\]\[\large\rm f(-x)=(-x)^3=-(x)^3=-f(x)\] \[\large\rm g(x)=\sin(x)\]\[\large\rm g(-x)=\sin(-x)=-\sin(x)=-g(x)\] An even function satisfies this property:\[\large\rm f(-x)=f(x)\]Examples:\[\large\rm f(x)=x^2\]\[\large\rm f(-x)=(-x)^2=(x)^2=f(x)\] \[\large\rm g(x)=\cos (x)\]\[\large\rm g(-x)=\cos(-x)=\cos(x)=g(x)\]
zepdrix
  • zepdrix
Tangent is like sine in this respect.
zepdrix
  • zepdrix
It's good to have an understanding of even and odd functions, but at the very least make sure you understand the basics that it allows us with trig functions: `if you have a negative in your cosine, it can disappear` `if you have a negative in your sine or tangent, it can come outside`
En
  • En
oh my goodness.. thank you so much

Looking for something else?

Not the answer you are looking for? Search for more explanations.