Solve algebraically. \[\frac{ e^x + e^{-x} }{ e^x - e^{-x} } = 5\] I started out by multiply both sides by the bottom fraction and whatnot and took the natural logs of both sides and resulted in error.. haven't done math in months..

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Solve algebraically. \[\frac{ e^x + e^{-x} }{ e^x - e^{-x} } = 5\] I started out by multiply both sides by the bottom fraction and whatnot and took the natural logs of both sides and resulted in error.. haven't done math in months..

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

let \(e^x=u\), rearrange the equation and get a quadratic
|dw:1441511606981:dw|
Yeah that's what i did originally ^

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

@ganeshie8 i'll try that right now
ya thats good enuff too
|dw:1441511754857:dw|
|dw:1441511833267:dw|
OH
IM DUMB
|dw:1441511696871:dw|
thanks guys forgot that e^-x = 1/e^x xD
if you're not really interested in the numeric value, you could save all that algebra by simply saying \(\coth x = 5 \implies x = \coth^{-1}(5)\)
http://mathworld.wolfram.com/HyperbolicCotangent.html

Not the answer you are looking for?

Search for more explanations.

Ask your own question