What is this question asking me to do? Assuming that the sequence {an} defined below is convergent, find its limit. a1=1,an+1=12−1an,n≥1.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

What is this question asking me to do? Assuming that the sequence {an} defined below is convergent, find its limit. a1=1,an+1=12−1an,n≥1.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

you need to find \(\lim\limits_{n\to\infty}~a_n\)
\[a _{1}=1,a _{n+1}=12-\frac{ 1 }{ a _{n} }, n \ge1\]
How would I go abouts doing that? @ganeshie8

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

use below \(\lim\limits_{n\to\infty}~a_{n+1} = \lim\limits_{n\to\infty}~a_n\)
let \(\lim\limits_{n\to\infty}~a_n =\lim\limits_{n\to\infty}~a_{n+1} =x\)
so you want to solve \(x\)
we have \(a _{n+1}=12-\frac{ 1 }{ a _{n} }\) take limit \(\lim\limits_{n\to\infty} a _{n+1}=\lim\limits_{n\to\infty} 12-\frac{ 1 }{ a _{n} }\\~\\x = 12-\frac{1}{x}\) you can solve \(x\)
\[x=6\pm \sqrt{35}\] But how did you manage to get that from the question?
get what ?
Get what to do :p
ahh i have already told you :) you need to be a lil more specific haha
How did you know that you had to equate the two limits together to figure out the question and stuff? :P
okay honestly i didn't invent that trick... i don't think its some thing that occurs easily to anyone... it needs to be shown by others...
Ahh, fair enough then, well thanks for the assistance as always! :)
np :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question