• anonymous
an ethernet cable is 4 m long and has a mass of 0.2 kg . a transverse wave is produced by plucking one end of the taut cable. the pulse makes 4 trips down and back along the cable in 0.8 sec , what is the tension in the cable?
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
Let "\(T\)" be the tension in the cable, and then the vertical component of the cable tension is: \(F_v = T×Sin(30) \) Now, try to solve it using the formula.. @YamadaTasnim
  • anonymous
\[trips / time= (1/2L) \sqrt{T/(kg/m)} \] i use this formula.. got it right! @Persia
  • Michele_Laino
the emitted frequency \( \large \nu \) by the cable is given by the subsequent formula: \[\Large \nu = \frac{1}{{2L}}\sqrt {\frac{T}{\rho }} \;\left( {{\text{Hz}}} \right)\] where \( \large \rho \) is the linear density of the cable, and \( \large T \) is the tension which is acting on the cable

Looking for something else?

Not the answer you are looking for? Search for more explanations.