unimatix
  • unimatix
Derivatives without using shortcut method. Problem: g(x) = x sqrt(x)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
unimatix
  • unimatix
Going to show what I have as of now: \[g(x) = xsqrt(x)\] \[y = xsqrt(x)\] \[y + \triangle y = x + \triangle(x)\sqrt{ (x+\triangle x ) )}\]
unimatix
  • unimatix
|dw:1441578438052:dw|
triciaal
  • triciaal
|dw:1441579069139:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

triciaal
  • triciaal
|dw:1441579234601:dw|
triciaal
  • triciaal
this is going too far back
unimatix
  • unimatix
I know the product rule. I'm trying to do it without though.
unimatix
  • unimatix
I tried to rationalize the numerator on the left and got nothing.
Jhannybean
  • Jhannybean
\[g(x) = x\sqrt{x}\]\[g(x+h) = (x+h)(\sqrt{x+h})\]\[\frac{g(x+h)-g(x)}{h}=\frac{(x+h)(\sqrt{x+h})-x\sqrt{x}}{h} \]
Jhannybean
  • Jhannybean
Meh.. the only thing that'll work here would be : \[=\frac{\sqrt{(x+h)^3}-x^{3/2}}{h}= \frac{(x+h)^{3/2}-x^{3/2}}{h} \]
amistre64
  • amistre64
you are trying to work first principles .. the limit definition of a derivative right?
Jhannybean
  • Jhannybean
Mmhmm... \(\lim_{h\rightarrow 0}\)
amistre64
  • amistre64
(x+h) sqrt(x+h) - x sqrt(x) ------------------------- h x sqrt(x+h) +hsqrt(x+h) - x sqrt(x) ------------------------------- h x (sqrt(x+h) - sqrt(x)) sqrt(x+h) + ------------------- h x (h) sqrt(x+h) + ------------------- h(sqrt(x+h) + sqrt(x)) x sqrt(x+h) + ------------------- sqrt(x+h) + sqrt(x))
amistre64
  • amistre64
do you follow it?
Jhannybean
  • Jhannybean
Not the third step.
amistre64
  • amistre64
(ac+b)/a = c + (b/a)
amistre64
  • amistre64
you just split the fraction into convenient terms, and the left side is just a simplified result of h/h sqrt(x+h)
Jhannybean
  • Jhannybean
Oh, I see what you did now.
amistre64
  • amistre64
\[\frac{a+bh+c}{h}\color{red}{\implies}\frac{bh}{h}+\frac{a+c}{h}\]
amistre64
  • amistre64
the rest is taken care of by a conjugate
Jhannybean
  • Jhannybean
Just trying to solve it by myself real quick and cross-checking between my work and your method :)
Jhannybean
  • Jhannybean
Then.... \[\lim_{h\rightarrow 0} \left(\sqrt{x+h} +\frac{x}{2\sqrt{x}}\right) \]\[=\sqrt{x}+\frac{x}{2\sqrt{x}}\]\[=\frac{2x+x}{2\sqrt{x}}\]\[=\frac{3x}{2\sqrt{x}}\]\[=\frac{3x^{3/2}}{2x}\]\[=\boxed{\frac{3}{2}x^{1/2}}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.