anonymous
  • anonymous
Let f(x)= sqrt of x and g(x)=cubed root of 1-x. Find a formula for g(f(x) and find it's domain
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

DanJS
  • DanJS
\[g(f(x))=\sqrt[3]{1-f(x)} = \sqrt[.3]{1-\sqrt{x}}\]
dinamix
  • dinamix
\[\sqrt[3]{1-\sqrt{x}}\]@Blairortiz
dinamix
  • dinamix
lol @DanJS

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

DanJS
  • DanJS
hit post at the same time
dinamix
  • dinamix
yeah
DanJS
  • DanJS
@Blairortiz Do you know the domain of the square root and the cubed root functions?
anonymous
  • anonymous
No
dinamix
  • dinamix
\[x ^{1/2} =\sqrt{x}\]
dinamix
  • dinamix
\[\sqrt[3]{x}=x ^{3/2}\]
anonymous
  • anonymous
So the domain is x^3/2 and x^1/2?
DanJS
  • DanJS
\[\sqrt x\] For this x has to be greater than or equal to zero, so the domain of f(x) is all x greater than or equal to zero...
DanJS
  • DanJS
The cubed root function can have any real number as a value of x...
DanJS
  • DanJS
DanJS
  • DanJS
So for the g(f(x)), the domain is all x greater than or equal to zero, the red function in the graph

Looking for something else?

Not the answer you are looking for? Search for more explanations.