shaniehh
  • shaniehh
Help Me Simplify the expression
Algebra
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
iwillrektyou
  • iwillrektyou
What is the problem?
iwillrektyou
  • iwillrektyou
o_O that's hard, sorry, I'm not up to that yet. :(

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

shaniehh
  • shaniehh
and rewrite it in rational exponent form
shaniehh
  • shaniehh
okay
SolomonZelman
  • SolomonZelman
Okay, you basically need to know 3 rules: \(\Large\color{black}{ \displaystyle x^{\color{red}{\rm a}} \times x^{\color{blue}{\rm b}}=x^{\color{red}{\rm a}+\color{blue}{\rm b}}\\[0.5em] }\) \(\Large\color{black}{ \displaystyle x^{\color{red}{\rm a}} \div x^{\color{blue}{\rm b}}=x^{\color{red}{\rm a}-\color{blue}{\rm b}}\\[0.5em] }\) \(\Large\color{black}{ \displaystyle \sqrt[\color{blue}{\rm b}]{x^{\color{red}{\rm a}}}= x^{\color{red}{\rm a}/\color{blue}{\rm b}} }\)
jdoe0001
  • jdoe0001
hmmm actaully... .I kinda miss a couple of fellows, the 3 and 4 at the bottom... lemme rewrite it a bit in a sec
jdoe0001
  • jdoe0001
hmmm \(\large { \cfrac{x^{\frac{2}{3}}\cdot 24y\cdot \sqrt[4]{y^3}}{3x^2\cdot 4\sqrt[3]{x^2}} \\ \quad \\ a^{\frac{{\color{blue} n}}{{\color{red} m}}} \implies \sqrt[{\color{red} m}]{a^{\color{blue} n}} \qquad \qquad \sqrt[{\color{red} m}]{a^{\color{blue} n}}\implies a^{\frac{{\color{blue} n}}{{\color{red} m}}}\qquad thus \\ \quad \\ \cfrac{x^{\frac{2}{3}}\cdot 24y\cdot \sqrt[4]{y^3}}{3x^2\cdot 4\sqrt[3]{x^2}}\implies \cfrac{x^{\frac{2}{3}}\cdot 24y\cdot y^{\frac{3}{4}}}{3x^2\cdot 4x^{\frac{2}{3}}}\qquad and\ then \\ \quad \\ a^{-\frac{{\color{blue} n}}{{\color{red} m}}} = \cfrac{1}{a^{\frac{{\color{blue} n}}{{\color{red} m}}}} \implies \cfrac{1}{\sqrt[{\color{red} m}]{a^{\color{blue} n}}}\qquad\qquad % radical denominator \cfrac{1}{\sqrt[{\color{red} m}]{a^{\color{blue} n}}}= \cfrac{1}{a^{\frac{{\color{blue} n}}{{\color{red} m}}}}\implies a^{-\frac{{\color{blue} n}}{{\color{red} m}}} \qquad thus \\ \quad \\ \cfrac{x^{\frac{2}{3}}\cdot 24y^1\cdot y^{\frac{3}{4}}}{3^1x^2\cdot 4^1x^{\frac{2}{3}}}\implies x^{\frac{2}{3}}\cdot 24y^1\cdot y^{\frac{3}{4}}\cdot 3^{-1}x^{-2}\cdot 4^{-1}x^{-\frac{2}{3}} \\ \quad \\ \implies \cfrac{x^{\frac{2}{3}\cdot}\cdot x^{-2}\cdot x^{-\frac{2}{3}}\cdot 24y^1\cdot y^{\frac{3}{4}\cdot } }{3^1\cdot 4^1} }\)
jdoe0001
  • jdoe0001
anyhow, so use the same-base exponent rule and see what you can cancel out from the fraction
shaniehh
  • shaniehh
It says rewrite it in rational exponent form @jdoe0001
jdoe0001
  • jdoe0001
well, take a look, is all in rational exponents :)
jdoe0001
  • jdoe0001
you just need to simplify it

Looking for something else?

Not the answer you are looking for? Search for more explanations.