Help Me Simplify the expression

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Help Me Simplify the expression

Algebra
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

What is the problem?
o_O that's hard, sorry, I'm not up to that yet. :(

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

and rewrite it in rational exponent form
okay
Okay, you basically need to know 3 rules: \(\Large\color{black}{ \displaystyle x^{\color{red}{\rm a}} \times x^{\color{blue}{\rm b}}=x^{\color{red}{\rm a}+\color{blue}{\rm b}}\\[0.5em] }\) \(\Large\color{black}{ \displaystyle x^{\color{red}{\rm a}} \div x^{\color{blue}{\rm b}}=x^{\color{red}{\rm a}-\color{blue}{\rm b}}\\[0.5em] }\) \(\Large\color{black}{ \displaystyle \sqrt[\color{blue}{\rm b}]{x^{\color{red}{\rm a}}}= x^{\color{red}{\rm a}/\color{blue}{\rm b}} }\)
hmmm actaully... .I kinda miss a couple of fellows, the 3 and 4 at the bottom... lemme rewrite it a bit in a sec
hmmm \(\large { \cfrac{x^{\frac{2}{3}}\cdot 24y\cdot \sqrt[4]{y^3}}{3x^2\cdot 4\sqrt[3]{x^2}} \\ \quad \\ a^{\frac{{\color{blue} n}}{{\color{red} m}}} \implies \sqrt[{\color{red} m}]{a^{\color{blue} n}} \qquad \qquad \sqrt[{\color{red} m}]{a^{\color{blue} n}}\implies a^{\frac{{\color{blue} n}}{{\color{red} m}}}\qquad thus \\ \quad \\ \cfrac{x^{\frac{2}{3}}\cdot 24y\cdot \sqrt[4]{y^3}}{3x^2\cdot 4\sqrt[3]{x^2}}\implies \cfrac{x^{\frac{2}{3}}\cdot 24y\cdot y^{\frac{3}{4}}}{3x^2\cdot 4x^{\frac{2}{3}}}\qquad and\ then \\ \quad \\ a^{-\frac{{\color{blue} n}}{{\color{red} m}}} = \cfrac{1}{a^{\frac{{\color{blue} n}}{{\color{red} m}}}} \implies \cfrac{1}{\sqrt[{\color{red} m}]{a^{\color{blue} n}}}\qquad\qquad % radical denominator \cfrac{1}{\sqrt[{\color{red} m}]{a^{\color{blue} n}}}= \cfrac{1}{a^{\frac{{\color{blue} n}}{{\color{red} m}}}}\implies a^{-\frac{{\color{blue} n}}{{\color{red} m}}} \qquad thus \\ \quad \\ \cfrac{x^{\frac{2}{3}}\cdot 24y^1\cdot y^{\frac{3}{4}}}{3^1x^2\cdot 4^1x^{\frac{2}{3}}}\implies x^{\frac{2}{3}}\cdot 24y^1\cdot y^{\frac{3}{4}}\cdot 3^{-1}x^{-2}\cdot 4^{-1}x^{-\frac{2}{3}} \\ \quad \\ \implies \cfrac{x^{\frac{2}{3}\cdot}\cdot x^{-2}\cdot x^{-\frac{2}{3}}\cdot 24y^1\cdot y^{\frac{3}{4}\cdot } }{3^1\cdot 4^1} }\)
anyhow, so use the same-base exponent rule and see what you can cancel out from the fraction
It says rewrite it in rational exponent form @jdoe0001
well, take a look, is all in rational exponents :)
you just need to simplify it

Not the answer you are looking for?

Search for more explanations.

Ask your own question