What is the length of side c to the nearest tenth of a foot?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

What is the length of side c to the nearest tenth of a foot?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

1 Attachment
Use the Pythagorean theorem \[a^2+b^2=c^2\]
\[400^2+900^2=c^2\] To simplify things, we're going to divide by 100 to get this \[4^2+9^2=c^2\] \[16+81=c^2\] \[97=c^2\] \[c=\sqrt{97}\] \[c \approx 9.849\] Since we divided this by 100, we have to multiply by 100, so the answer would be \[984.9 \] feet

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Hope this helps buddy!
@steve816 Thank you! Now what if I had to find angle a with the same information?
Then you would use a little bit of trigonometry!
@steve816 Is angle a what is known as theta if I'm not mistaken?

Not the answer you are looking for?

Search for more explanations.

Ask your own question