Let \(f\) be a function such that \(\sqrt {x - \sqrt { x + f(x) } } = f(x) , \) for \(x > 1\). In that domain, \(f(x)\) has the form \(\frac{a+\sqrt{cx+d}}{b},\) where \(a,b,c,d\) are integers and \(a,b\) are relatively prime. Find \(a+b+c+d.\)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Let \(f\) be a function such that \(\sqrt {x - \sqrt { x + f(x) } } = f(x) , \) for \(x > 1\). In that domain, \(f(x)\) has the form \(\frac{a+\sqrt{cx+d}}{b},\) where \(a,b,c,d\) are integers and \(a,b\) are relatively prime. Find \(a+b+c+d.\)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1441598718061:dw|
|dw:1441598909212:dw|
I got a=-1 and b=2 and 2c+d=5 ... I plugged into x=2 into both forms to get this I bet you can plug in another value for x to get another equation relating c and d and then solve that system for c and d

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

just 1 question.. -2,1 is relatively prime im assuming is 2,-1 also said to be relatively prime
the gcd(2,-1)=1 so 2 and -1 are relatively prime
oh okay that cool, i didnt realize gcd's protected u from negative factors till now lol
plugging in x=3 will give you an easy solution to play with
well equation relating c and d I mean
gcd(x,y)=d where d>=0
if x and y are negative you can just look at the absolute values of them
\[\gcd(2,-1)=\gcd(|2|,|-1|)=\gcd(2,1)\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question