is there any shortcut or general form to find roots of a complex number? like: find square root of i. Please, help

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

is there any shortcut or general form to find roots of a complex number? like: find square root of i. Please, help

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1441633315208:dw|
the roots are \(\sqrt2/2+ i\sqrt 2/2 ~~and -\sqrt 2/2 -i\sqrt 2/2\) What is the shortcut of the procedure?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Use De Moivre's theorem. The geometrical interpretation makes the calculations easy. try: http://www.mathamazement.com/Lessons/Pre-Calculus/06_Additional-Topics-in-Trigonometry/de-moivres-theorem.html
Thanks for the tip. I know how to find the roots out. Just wonder is there any shortcut but still be flawless to "cut" out the procedure. :)
If you find an easier way, please share with me! xD
hehehe... sure.
Thanks! :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question