Loser66
  • Loser66
is there any shortcut or general form to find roots of a complex number? like: find square root of i. Please, help
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Loser66
  • Loser66
@dan815
Loser66
  • Loser66
|dw:1441633315208:dw|
Loser66
  • Loser66
the roots are \(\sqrt2/2+ i\sqrt 2/2 ~~and -\sqrt 2/2 -i\sqrt 2/2\) What is the shortcut of the procedure?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathmate
  • mathmate
Use De Moivre's theorem. The geometrical interpretation makes the calculations easy. try: http://www.mathamazement.com/Lessons/Pre-Calculus/06_Additional-Topics-in-Trigonometry/de-moivres-theorem.html
Loser66
  • Loser66
Thanks for the tip. I know how to find the roots out. Just wonder is there any shortcut but still be flawless to "cut" out the procedure. :)
mathmate
  • mathmate
If you find an easier way, please share with me! xD
Loser66
  • Loser66
hehehe... sure.
mathmate
  • mathmate
Thanks! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.