anonymous
  • anonymous
derivate f(x)=ln(x2+3), x0=l f'(x)=
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

welshfella
  • welshfella
use the chain rule
welshfella
  • welshfella
does that help?
anonymous
  • anonymous
but i don;t know to do that

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

welshfella
  • welshfella
you haven't used the chain rule?
anonymous
  • anonymous
no, i want to help my friend
anonymous
  • anonymous
with your help^^
welshfella
  • welshfella
ln(x^2 + 3) is a compound function - function within a function so we can write it as f(g(x) where g(x) = x^2 + 3 so derivative of f(g(x) = f'(g)x) * g'(x) = 1/ (x^2 + 3) * 2x = 2x/ (x^2 + 3) - that is f'(x)
welshfella
  • welshfella
i used the standard derivatives D (ln u) = 1/u. and D (x^n) = nx^(n-1)
SolomonZelman
  • SolomonZelman
Are you clear with evertthing? What other examples of chain rule, or what? (Please reply, don't just sit silent. We will help you)

Looking for something else?

Not the answer you are looking for? Search for more explanations.