anonymous
  • anonymous
The figure below shows a parallelogram ABCD. Side AB is parallel to side DC, and side AD is parallel to side BC:
Geometry
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
A student wrote the following sentences to prove that parallelogram ABCD has two pairs of opposite sides equal:
anonymous
  • anonymous
should there be more?
anonymous
  • anonymous
A student wrote the following sentences to prove that parallelogram ABCD has two pairs of opposite sides equal: For triangles ABD and CDB, alternate interior angle ABD is congruent to angle CDB because AB and DC are parallel lines. Similarly, alternate interior angle ADB is equal to angle CBD because AD and BC are parallel lines. DB is equal to DB by reflexive property. Therefore, triangles ABD and CDB are congruent by SAS postulate. Therefore, AB is congruent to DC and AD is congruent to BC by CPCTC. Which statement best describes a flaw in the student's proof? Angle ADB is congruent to angle CBD because they are vertical angles. Angle ADB is congruent to angle CBD because they are corresponding angles. Triangles ABD and CDB are congruent by SSS postulate. Triangles ABD and CDB are congruent by SAS postulate.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
anonymous
  • anonymous
I think it would either be C or D, but not sure
anonymous
  • anonymous
thank you
anonymous
  • anonymous
You're Welcome

Looking for something else?

Not the answer you are looking for? Search for more explanations.