Agent_A
  • Agent_A
Ordinary Differential Equations Question: (see photo)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Agent_A
  • Agent_A
1 Attachment
SolomonZelman
  • SolomonZelman
For question one: y'+y=1 so you just have linear DE \(\Large e^{H(x)}= \LARGE e^{^{\LARGE \int dx}}\)
SolomonZelman
  • SolomonZelman
and then use the product rule backwards, as you should probably know to.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

SolomonZelman
  • SolomonZelman
Ok, for question 2 \(\large\color{black}{ \displaystyle \frac{dz}{dt} =z^2+4 }\) integrate both sides with respect to z (and then you will have to solve for z)
SolomonZelman
  • SolomonZelman
3 is same as 2, but different variables.
anonymous
  • anonymous
help!! me plzz
SolomonZelman
  • SolomonZelman
And then for 4. \(\large\color{black}{ \displaystyle \frac{dy}{dt}=\frac{ 1}{t^2y+t^2+y+1} }\) \(\large\color{black}{ \displaystyle \frac{dy}{dt}=\frac{ 1}{t^2(y+1)+y+1} }\) \(\large\color{black}{ \displaystyle \frac{dy}{dt}=\frac{ 1}{(t^2+1)(y+1)} }\) \(\large\color{black}{ \displaystyle (y+1)\frac{dy}{dt}=\frac{ 1}{t^2+1} }\) integrate both sides with respect to t.
SolomonZelman
  • SolomonZelman
ok, bye
SolomonZelman
  • SolomonZelman
Oh, actually, it would be better for question 2: 1/(4+z²) dz/dt=1 then integrate with respect to t on both sides, and then solve for z. ------------------ and bring the 1/(y²-9) over to dy/dt, and then integrate both sides with respect to t.
SolomonZelman
  • SolomonZelman
For question 1, if you want: \(\large\color{black}{ \displaystyle y'=y-1 }\) \(\large\color{black}{ \displaystyle \frac{ dy}{dx}=y-1 }\) \(\large\color{black}{ \displaystyle \frac{1}{y-1}\frac{ dy}{dx}=1 }\) integrate both sides with respect to x. (you will also then have to solve for y)
Agent_A
  • Agent_A
Thank You, @SolomonZelman!

Looking for something else?

Not the answer you are looking for? Search for more explanations.