anonymous
  • anonymous
Help! Write 5^0 X 5^-12 using positive exponents.
Algebra
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[5^{0} \times 5^{-12}\]
Nnesha
  • Nnesha
exponent rule when we multiply same bases we should `add` their exponents \[\huge\rm x^m \times x^n=x^{m+n}\] and when we divide same bases we should `subtract` their exponents \[\huge\rm \frac{ x^m }{ x^n }=x^{m-n}\]
anonymous
  • anonymous
So would it be \[5^{-12}\] ? Cause i need a positive exponent

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
or use positive exponents
Nnesha
  • Nnesha
yes right next step \[\huge\rm x^{-m}=\frac{ 1 }{ x^m }\]
Nnesha
  • Nnesha
you just to know those exponent rules that's it :=)
anonymous
  • anonymous
okay so the final would be \[\left(\begin{matrix}1 \\ 5^{12}\end{matrix}\right)\] ?
Nnesha
  • Nnesha
yes right!
anonymous
  • anonymous
Okay thanks for the third time lol :)
Nnesha
  • Nnesha
haha yw! :=)

Looking for something else?

Not the answer you are looking for? Search for more explanations.