Find the exact area of the surface obtained by rotating the curve about the x-axis. y =( (x^3)/3)+(1/4x) 1/2 <= x <= 1 Need Help!

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the exact area of the surface obtained by rotating the curve about the x-axis. y =( (x^3)/3)+(1/4x) 1/2 <= x <= 1 Need Help!

Calculus1
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

A solution using the Mathematica computer program is attached.
1 Attachment
@robtobey: You probably misread the question. Not the volume of the body is needed, but its surface area. The formula for the surface area is: \(\int_{0.5}^1 2\pi f(x)\sqrt{1+(f'(x))^2}dx \) This would be: \( \int_{0.5}^1 2\pi(\frac{x^3}{3}+\frac{x}{4})\sqrt{1+(x^2+\frac{1}{4})^2}dx\)
I'm not confident if I can do this... Looking it up in WolframAlpha confirms my fears:
1 Attachment

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Refer to the attachment from the Mathematica v9 program.
1 Attachment
@ZeHanz the integral isn't too bad, as it turns out: \[2\pi\int_{1/2}^1 \left(\frac{x^3}{3}+\frac{x}{4}\right)\sqrt{1+\left(x^2+\frac{1}{4}\right)^2}\,dx\] Pull out a factor of \(\frac{x}{3}\), rewrite, then substitute \(t=x^2+\dfrac{1}{4}\) so that \(\dfrac{1}{2}\,dt=x\,dx\), giving \[\frac{2\pi}{3}\int_{1/2}^1 x\left(x^2+\frac{3}{4}\right)\sqrt{1+\left(x^2+\frac{1}{4}\right)^2}\,dx=\frac{\pi}{3}\int_{1/2}^{5/4}\left(t+\frac{1}{2}\right)\sqrt{1+t^2}\,dt\] Next, set \(t=\tan v\), so \(dt=\sec^2v\,dv\), then the integral becomes \[\frac{\pi}{3}\int_{\arctan(1/2)}^{\arctan(5/4)}\left(\tan v+\frac{1}{2}\right)\sqrt{1+\tan^2v}\,\sec^2v\,dv\] Simplifying, \[\frac{\pi}{3}\int_{\arctan(1/2)}^{\arctan(5/4)}\left(\tan v+\frac{1}{2}\right)\sec^3v\,dv\] Upon expanding, we can easily deal with the remaining integration. \[\begin{align*}\int \tan v\sec^3v\,dv&=\int \tan v\sec v\sec^2v\,dv\\[1ex]&=\int \sec^2v\,d(\sec v)\\[1ex]&=\frac{1}{3}\sec v+C\\[2ex]\hline \int\sec^3v\,dv&=\sec v\tan v-\int \sec v\tan^2v\,dv\\[1ex] &=\sec v\tan v-\int \frac{\sin^2v}{\cos^3v}\,dv\\[1ex] &=\sec v\tan v-\int \frac{1-\cos^2v}{\cos^3v}\,dv\\[1ex] &=\sec v\tan v-\int (\sec^3v-\sec v)\,dv\\[1ex] 2\int\sec^3v\,dv&=\sec v\tan v+\int \sec v\,dv\\[1ex] \int\sec^3v\,dv&=\frac{\sec v\tan v+\ln|\sec v+\tan v|}{2}+C\end{align*}\]
Typo, that first antiderivative should be \(\dfrac{1}{3}\sec^{\color{red}3}v+C\)
Well, that's impressive stuff, imo!

Not the answer you are looking for?

Search for more explanations.

Ask your own question