anonymous
  • anonymous
Determine whether the function has a vertical asymptote or a removable discontinuity. Classify the discontinuity. h(x)= (x^3+1)/(x+1)
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
in this case set the denominator to zero x+1=0, then solve for x. X = -1 if you could factor the numerator and cancel something out you would find a hole or removable discontinuity. In this case, I don't see this as possible. Therefore, the vertical asymptote is x= -1 Hope this helps
anonymous
  • anonymous
The numerator can be factored since it's a convenient sum of cubes: \[x^3+1^3=(x+1)(x^2-x+1)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.