osanseviero
  • osanseviero
How many permutations can you make with the word infinite?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
osanseviero
  • osanseviero
I thought about counting each different letter and then doing by group.
Nnesha
  • Nnesha
what's the total number of letters ? and how many letters re repeating ?
osanseviero
  • osanseviero
8 letters, with N repeating twice and I repeating 3 times.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

osanseviero
  • osanseviero
(5 unique letters)
osanseviero
  • osanseviero
Got it. It would be the total divided by the total of each one.
Nnesha
  • Nnesha
alright nice \[\huge\rm \color{ReD}{i}\color{blue}{n}f\color{reD}{i}\color{blue} {n}\color{ReD}{i}te \] \[\huge\rm \frac{ 8! }{ \color{Red}{3!}\color{blue}{2!} }\]
Nnesha
  • Nnesha
yes right total number divide by total number of repeating letters
osanseviero
  • osanseviero
Thanks a lot. My problem is to distinguish which of so many formulas to use hehe
Nnesha
  • Nnesha
now solve to find final answer**
osanseviero
  • osanseviero
3360 :)
Nnesha
  • Nnesha
hahah well you don't need formula for this one
osanseviero
  • osanseviero
I know, I just get confused sometimes
Nnesha
  • Nnesha
3360 ?
osanseviero
  • osanseviero
Yep
Nnesha
  • Nnesha
doesn't looks right.
osanseviero
  • osanseviero
Actually it is the correct answer in the book :)
Nnesha
  • Nnesha
ohh nvm *facepalm* i solved `6!` over 3!2!
osanseviero
  • osanseviero
Hehe thanks for all the help :)
Nnesha
  • Nnesha
yes 3360

Looking for something else?

Not the answer you are looking for? Search for more explanations.